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Abstract
The Gaussian, exponential and Laguerre basis functions are examined in a
variational calculation of energies and wavefunctions. The Laguerre basis
set is already orthonormal and complete, but the Gaussian and exponential
basis sets are not orthonormal. We used the linear and Coulomb potentials
to test these basis functions. Calculations are performed in both position and
momentum space. We also present the results with relativistic kinematics
in the momentum space calculation. The Gram–Schmidt procedure is used to
orthonormalize the Gaussian and exponential basis sets before using them in the
calculations. We show that in the case of a pure linear potential, the orthonormal
basis constructed from the Gaussian functions performs much better than the
exponential and Laguerre basis for the same number of orthogonal functions.
For Coulomb-like potentials, the exponential basis performs better than the
other two for the same number of basis functions. The advantage of using
these simple basis functions is that for the potentials that we examined, one can
approach the lower bound of the low-lying states with very few basis functions.

PACS numbers: 02.60.Cb, 02.60.Jh, 02.60.Lj

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Potential models have been an important technique for understanding the mass spectrum
of hadrons composed of two (mesons) or three (baryons) constituent quarks [1–4]. The
idea is to use a potential that describes both the long-range quark interaction which
produces confinement, plus a shorter range potential that describes asymptotic freedom. A
function that grows linearly with distance, which is motivated from studies of lattice gage
theory [5], is commonly used as a potential model for the long-range confining interaction
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[6]. A function inversely proportional to distance, i.e. a Coulomb-like potential, is often
used for the short-range quark interaction and is motivated by high-momentum studies of
quantum chromodynamics [7]. These potentials can be inserted into the non-relativistic
Schrödinger equation or, with appropriate modifications, can be used in three-dimensional
psuedo-relativistic wave equations [8–16] or the fully relativistic bound-state Bethe–Salpeter
equation [17–19]. Relativistic effects are important because they are needed to describe various
phenomenological properties, such as Regge trajectories [20]. Non-relativistic potential
models are successful in describing properties of hadrons containing heavy quarks [21–24],
whereas relativistic models need to be used for light quark systems [25]. Nevertheless, the
basic paradigm of a Coulomb plus linear potential [26–29] has proved to be very successful in
describing a host of hadron properties, such as decay rates and spectroscopy [30–35]. These
potentials and their associated bound-state equations are also often studied in momentum
space due to the ease of treating relativistic effects [36].

The present paper investigates a particular aspect of linear and Coulomb potentials used
for both non-relativistic equations and equations with relativistic kinematics in both position
and momentum space. In order to solve a bound-state equation using matrix methods, one is
often required to expand the wavefunction in terms of a known set of basis functions. The
present work examines three common choices for the basis function set and analyses their
behavior with common choices for bound-state equations. This could be useful in making
more precise calculations of hadron spectra and decay rates.

There are many ways to calculate the energy spectrum of a given Hamiltonian. A common
method is to expand the wavefunction in a complete orthonormal basis set. In practice, one
cannot use an infinite number of basis functions and one has to settle for a finite subset, and the
wavefunction is expanded as a linear combination of a finite set of orthogonal functions. The
expansion coefficients can be treated as variational parameters and the calculation becomes a
variational problem. Minimizing the energy with respect to these coefficients leads to a matrix
eigenvalue equation which must be solved. The lowest eigenvalue is now the upper bound of
the ground-state energy. As the number of functions in the expansion increases, the estimate of
the ground-state energy becomes better, although it will achieve the true ground-state energy
value only when an infinite number of functions is used. In reality, one can never use an
infinite number of functions, and the lowest energy eigenvalue might not be as close as one
would like to the true ground-state energy. This can be remedied by including one or more
parameters in the basis functions themselves. There are certain complete basis sets that are
well known [40], and the above method works very well with these basis functions. We will
show that one can construct some simple basis function sets which work very well with only
a small number of functions. These basis functions do not have to be orthogonal since they
can always be orthonormalized. In this paper, we will present the results obtained for linear
and Coulomb potentials.

2. Method

In this paper, a variational wavefunction is constructed from a linear combination of basis
functions. Each basis function is a function of r and a single variational parameter. The
expectation value of the Hamiltonian is found by using this variational wavefunction, and the
energy is minimized with respect to the variational parameter.

The Schrödinger equation for the reduced wavefunction unl(r) is

−h̄2

2μ

d2

dr2
unl(r) + V (r)unl(r) +

h̄2

2μ

l(l + 1)

r2
unl(r) = Eunl(r). (1)
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The variational wavefunction is a superposition of basis functions,

unl(r) =
Nmax∑
j=1

cj g̃j (r, b), (2)

where cj are the coefficients, the set {g̃j (r, b)} is an orthonormal set of basis functions and
b is the variational parameter. Orthogonal functions are denoted with a tilde as in g̃. If
the basis functions g̃j form a complete orthonormal set, then in the limit that the number of
superimposed basis functions approaches infinity, Nmax → ∞, the variational wavefunction
will approach the true wavefunction of the Schrödinger equation. In this paper, we consider
the linear potential and the Coulomb potential, i.e

V (r) = σr V (r) = −C/r, (3)

where σ and C are the coupling constants. This type of confining potential and Coulomb-like
potentials are frequently used in the studies of meson mass spectra in the context of quark–
antiquark bound states [36, 38]. For the purely linear potential, equation (1), with l = 0, can
be transformed into the Airy differential equation. The energies are related to the roots of the
Airy function xn by

En−1 =
(

σ 2h̄2

2μ

) 1
3

|xn|. (4)

For example, the ground-state energy E0 is proportional to the first root of the Airy function
x1. When l �= 0, there is no exact expression for the energy. In the case of pure Coulomb-like
potential, we will report the results for l = 0 with C = 1. We scale the equation in such a way
that En = −1/n2.

In this paper three different sets of basis functions are used. The first one is the Laguerre
basis which is a complete orthonormal basis set. The other two sets are based upon the
exponential and Gaussian functions defined as

gG
i (r, b) = NG

i rl+1 e−ai r
2

(5)

and

gE
i (r, b) = NE

i rl+1 e−ai r , (6)

with the normalization constants

NG
i ≡

√√√√2(2ai)
2l+3

2

�
(

2l+3
2

) , (7)

and

NE
i ≡

√
(2ai)2l+3

�(2l + 3)
. (8)

The variational parameter is b and ai = (Nmaxb
2)/i2 for the Gaussian basis and ai = (i/Nmaxb)

for the exponential basis, where i = 1, 2, 3, . . .. The Laguerre basis functions are defined as

g̃L
i (r, b) = (br)l+1

b

√
NL

i

L2l+2
i (2br) e−br , (9)

where Lβ
α(x) are the Laguerre polynomials and the normalization is given by

NL
i ≡ b−3

(
1

2

)2l+3
�(i + 2l + 3)

i!
. (10)
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As before, the variational parameter is b and i = 0, 1, 2, . . . are the indices. Note that the
Laguerre basis set is already orthonormal. Other authors [38, 40] have successfully used the
Laguerre basis to solve problems that frequently occur in nuclear and particle physics.

Although analytical expressions for the matrix elements of the non-relativistic kinetic
energy operator, the linear potential and the Coulomb potential exist for Laguerre basis
functions [38], in this paper we are comparing the efficiency of the Gaussian, exponential
and Laguerre basis functions in producing the energy spectrum of a given Hamiltonian. Note
that the energy spectra are known for a purely linear potential with l = 0 and are given by
equation (4). We compare the energy spectra obtained from the three different basis sets
while using the same number of basis functions for each basis set. Since the exponential and
Gaussian basis functions are not orthonormal, we first construct orthonormal sets {g̃i} by using
the Gram–Schmidt procedure.

For the Gaussian and exponential type of basis functions investigated in this paper, it is
numerically impossible to orthonormalize more than a certain number of basis functions. For
example, consider the set of functions {gi = exp[−(Nmax/i

2)b2r2]}. Here Nmax is the number
of functions to be orthonormalized and i = 1, 2, . . . , Nmax. Once Nmax is large enough, the
contribution from this function is negligible except for very small values of r. Therefore
increasing the number of functions to Nmax + 1 does not necessarily enable us to construct
Nmax + 1 number of orthogonal functions. With the Gaussian basis set we cannot construct
more than 15 orthonormal functions with double precision arithmetic and for the exponential
basis we cannot go beyond 10 functions.

All the basis function sets are orthonormalized as∫ ∞

0
g̃i(r, b)g̃j (r, b) dr = δij . (11)

Now expand the reduced wavefunction in equation (1) by using equation (2). After projecting
with g̃j (r) and integrating, we obtain

Nmax∑
i=1

ci

∫ ∞

0
g̃j (r)H g̃i(r) dr = Ecj . (12)

This is a standard eigenvalue problem, and we can find the eigenenergy and the eigenvectors.
Once the eigenvector (the values of the ci) is found, the wavefunction can be constructed from
equation (2).

3. Momentum space

As we mentioned in the introduction, relativistic kinematics can be easily implemented in
momentum space. In momentum space the Schrödinger equation is an integral equation
written as [36]

T (p)�(p) +
∫

〈p|V̂ |p′〉�(p′) dp′ = E�(p), (13)

where T (p) = p2/2μ for non-relativistic kinematics (μ is the reduced mass) and T (p) =√
p2 + m2

1 +
√

p2 + m2
2 for relativistic kinematics. 〈p|V̂ |p′〉 is the Fourier transform of the

position space potential V (r). The separation of the angular dependence part can be done by
taking �(p) = φl(p)Ym

l (θ, φ), and we obtain a one-dimensional integral equation

T (p)φl(p) +
∫ ∞

0
Vl(p, p′)φl(p

′)p′2 dp′ = Eφl(p). (14)

4
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Here, Vl(p, p′) is the lth partial wave component of the momentum space potential 〈p′|V̂ |p〉,
and it is given as

Vl(p, p′) = 2π

∫ +1

−1
〈p′|V̂ |p〉Pl(x) dx. (15)

Pl(x) is the Legendre polynomial of order l and x = cos θ . Now the wavefunction φl(p) can
be expanded in a basis as

φl(p) =
Nmax∑
i=1

ci f̃ i(p), (16)

where f̃ i(p) are the orthonormal basis functions constructed from fi(p)’s, which are the
Fourier–Bessel transforms of the function gn(r) in equations (5), (6) and (9), and they are
related by

fi(p) =
√

2

π

∫ ∞

0
gi(r)jl(pr)r2 dr. (17)

The Fourier–Bessel transforms fi(p) are given by

f G
i (p) = NG

i pl e−p2/4a

(2a)l+3/2
(18)

f E
i (p) =

√
2

π

NE
i (2a)(2p)l�(l + 2)

(a2 + p2)(l+2)
(19)

f L
i (p) = 1√

N

(p/b)l

[(p/b)2 + 1]l+2
P

(l+3/2,l+1/2)

i

(
p2 − b2

p2 + b2

)
. (20)

Here, f G
i (p), f E

i (p), f L
i (p) are the Fourier–Bessel transforms of the Gaussian, exponential

and Laguerre, respectively. P
(l+3/2,l+1/2)

i is the Jacobi polynomial and NG
i and NE

i are the
normalizations given in (7) and (8), and the normalizaton for the Fourier–Bessel transform of
the Laguerre basis is given by [40]

N = b3

2(2i + 2l + 3)

�(i + l + 5/2)�(i + l + 3/2)

i!�(i + 2l + 3)
. (21)

By expanding the wavefunction in equation (14) in terms of the orthonormalized functions
f̃ i(p) and then by multiplying with f̃ j (p)p2 and integrating, we obtain

Nmax∑
i=1

ci

[ ∫ ∞

0
f̃ j (p)T (p)f̃ i(p)p2 dp

+
∫ ∞

0

∫ ∞

0
Vl(p, p′)f̃ j (p)f̃ i(p

′)p′2p2 dp′ dp

]
= cjE. (22)

This is a standard matrix eigenvalue equation and can be solved by conventional means.
In momentum space, the linear potential and Coulomb-like potentials become singular and
subtraction methods must be used. In this paper, we have used the subtraction method
developed by Maung et al [36, 37]. All necessary details to reproduce the results of this paper
can be found in this reference.
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Figure 1. Position space results for the ground-state energy calculated with the Gaussian
variational wavefunction are plotted against the variational parameter for l = 0. Parameters
are m1 = m2 = 1 GeV and σ = 1 GeV2. The ground-state energy becomes more independent of
the variational parameter when Nmax is increased.

4. Results

In figure 1 the ground-state energy eigenvalues are plotted with respect to the variational
parameter, using the variational wavefunction constructed with the Gaussian basis for a
purely linear potential. Units are used in which h̄ = c = 1 for all calculations. Also
m1 = m2 = 1 GeV, σ = 1 GeV2 and l = 0. As seen in figure 1, the ground-state energy
eigenvalues become less dependent on the variational parameter as the number of basis
functions Nmax increases. The S state energies are given by the roots of the Airy function
in equation (4). Table 1 shows that all the energies from 1S to 5S agree with the position space
calculations based upon the Gaussian functions with Nmax = 15. Since all the S state energies
are given by the roots of the Airy function, we list the roots in the last column [41]. It can be
seen that the exponential function does not perform well compared to the Gaussian function.
Table 3 shows the results of the momentum space calculations for the same case and the same
conclusion is reached.

For P states, there are no analytical results for a purely linear potential in position space and
non-relativistic momentum space. In addition, there are no analytical results for a purely linear
potential for S and P states for relativistic momentum space calculations. Therefore, we use
the Laguerre basis results with 80 functions as a benchmark for position space, non-relativistic
momentum space and relativistic momentum space. Our position space and momentum space
calculations agree up to four decimal places for all energies when using 80 Laguerre basis
functions. Therefore, we keep only four decimal places for the P states for position space and
non-relativistic momentum space. We also keep four decimal places for the S and P states in
the relativistic momentum space calculations.

In figure 2, the ground-state energy eigenvalues are plotted as a function of the variational
parameter b. Results are shown for the Gaussian, exponential and the Laguerre basis. In
each case, the energy eigenvalues become independent of the variational parameter after some

6
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Table 1. Non-relativistic position space results. S state (l = 0) energies of the Gaussian,
exponential and Laguerre variational wavefunctions for Nmax = 5, Nmax = 10 and Nmax = 15.
The last column shows the roots of the Airy function given by Abramowitz and Stegun (A&S)
[41]. The results of Laguerre basis with Nmax = 80 basis functions agree to all digits with A&S.
Also, note that the results obtained with 15 Gaussian basis functions agree with A&S to all digits.

Basis function Nmax = 5 Nmax = 10 Nmax = 15 Nmax = 80 A&S

Gaussian
1S 2.338 127 24 2.338 107 41 2.338 107 41 2.338 107 41
2S 4.118 372 80 4.087 949 45 4.087 949 45 4.087 949 44
3S 6.273 183 01 5.520 559 84 5.520 559 83 5.520 559 83
4S 11.376 775 73 6.786 735 66 6.786 708 09 6.786 708 09
5S 30.017 629 06 7.947 670 45 7.944 133 59 7.944 133 59
Exponential
1S 2.339 283 09 2.338 109 44 2.338 107 41
2S 4.188 958 61 4.088 270 46 4.087 949 44
3S 5.860 557 14 5.524 152 63 5.520 559 83
4S 14.168 584 14 6.832 405 01 6.786 708 09
5S 75.589 991 49 8.340 714 92 7.944 133 59
Laguerre
1S 2.341 364 32 2.338 115 92 2.338 107 44 2.338 107 41 2.338 107 41
2S 4.133 335 25 4.088 575 63 4.087 952 62 4.087 949 44 4.087 949 44
3S 5.725 347 17 5.532 094 61 5.520 734 61 5.520 559 83 5.520 559 83
4S 8.114 237 80 6.838 594 40 6.789 927 19 6.786 708 09 6.786 708 09
5S 15.519 048 79 8.148 924 61 7.961 366 33 7.944 133 59 7.944 133 59

1 2 3 4 5 6 7
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Figure 2. Position space results for the ground-state energy are plotted against the variational
parameter for the Gaussian, exponential and Laguerre variational wavefunctions.

initial fluctuations. Note in figure 2 that the energy eventually increases after reaching the
minimum. The variational principle requires that the estimated energy approaches an upper
bound of the true ground-state energy. Since we use a finite number of basis functions to

7
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Table 2. Non-relativistic position space results. P state (l = 1) energies of the Gaussian,
exponential and Laguerre variational wavefunctions for Nmax = 5, Nmax = 10 and Nmax = 15.
Note that the results of Gaussian basis with Nmax = 15 agree with the results of Laguerre basis
with Nmax = 80 up to all decimal places. In this table, we keep the results up to four decimal
places (see the text).

Basis function Nmax = 5 Nmax = 10 Nmax = 15 Nmax = 80

Gaussian
1P 3.3616 3.3613 3.3613
2P 4.9692 4.8845 4.8845
3P 7.3819 6.2076 6.2076
4P 13.3651 7.4057 7.4057
5P 36.5071 8.5265 8.5152
Exponential
1P 3.3655 3.3613
2P 5.0092 4.8850
3P 6.4933 6.2111
4P 12.7104 7.4956
5P 51.304 8.8395
Laguerre
1P 3.3647 3.3613 3.3613 3.3613
2P 4.9178 4.8856 4.8845 4.8845
3P 6.5930 6.2160 6.2080 6.2076
4P 9.1130 7.4665 7.4083 7.4057
5P 11.5116 8.9001 8.5332 8.5152

construct the variational wavefunction, the energy eventually increases. If it were possible
to use an infinite number of basis functions, then the energy would remain constant after
reaching the minimum. In table 1, we list the ground-state energy eigenvalues for a purely
linear potential with l = 0,m1 = m2 = 1 GeV and σ = 1 GeV2. We also list the ground-state
energies obtained using the Gaussian, exponential and Laguerre variational wavefunctions. It
should be noted that the results with Nmax = 15 Gaussian basis agree to all decimal places
with the exact result [41]. In table 2, the calculations for l = 1 are repeated. It is interesting
to see that the Gaussian basis performs equally well for this case also. For l = 1, there are
no analytic results for the energy eigenvalues. Therefore, in the last column, the results from
the Laguerre calculations with Nmax = 80 are listed. This calculation is also verified with
momentum space results shown in table 4. We have also done the calculations for l = 2 (not
listed here) and find that the accuracies obtained for l = 2 are comparable with those for l = 0
and l = 1.

In figure 3, the normalized wavefunctions obtained with Nmax = 1, 3 and 5 Gaussian
basis and Nmax = 80 Laguerre basis are plotted with respect to the relative distance between
the particles. The wavefunction stabilizes as the number of basis functions Nmax increases.
Note that the wavefunction converges to a common shape when Nmax is increased from 3
to 5. Likewise, when Nmax is increased further, the shape of the wavefunction remains
unchanged. In figure 4, plots are shown for the wavefunctions for the 2S state obtained with
Nmax = 2, 5 and 10 Gaussian basis functions and Nmax = 80 Laguerre basis functions. The
Nmax = 10 Gaussian results are in agreement with the Nmax = 80 Laguerre results.

8
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Table 3. Non-relativistic momentum space results; S state (l = 0) energies of the Fourier
transformed (FT) Gaussian, exponential and Laguerre variational wavefunctions for Nmax =
5, Nmax = 10 and Nmax = 15. The last column shows the roots of the Airy function given
by Abramowitz and Stegun (A&S) [41]. Note that the results obtained with 15 Gaussian basis
functions agree with A&S to all digits.

Basis function Nmax = 5 Nmax = 10 Nmax = 15 Nmax = 80 A&S

FT Gaussian
1S 2.338 127 24 2.338 107 42 2.338 107 41 2.338 107 41
2S 4.118 372 80 4.087 949 45 4.087 949 45 4.087 949 44
3S 6.273 183 01 5.520 559 84 5.520 559 83 5.520 559 83
4S 11.376 775 73 6.786 735 66 6.786 708 09 6.786 708 09
5S 30.017 629 07 7.947 670 46 7.944 133 59 7.944 133 59
FT exponential
1S 2.339 283 09 2.338 109 45 2.338 107 41
2S 4.188 958 61 4.088 270 46 4.087 949 44
3S 5.860 557 14 5.524 151 87 5.520 559 83
4S 14.168 584 14 6.832 393 13 6.786 708 09
5S 75.589 991 50 8.340 709 11 7.944 133 59
FT Laguerre
1S 2.341 364 32 2.338 115 92 2.338 107 44 2.338 107 41 2.338 107 41
2S 4.133 335 25 4.088 575 63 4.087 952 62 4.087 949 44 4.087 949 44
3S 5.725 347 17 5.532 094 61 5.520 734 61 5.520 559 83 5.520 559 83
4S 8.114 237 80 6.838 594 40 6.789 927 19 6.786 708 09 6.786 708 09
5S 15.519 048 79 8.148 924 61 7.961 366 33 7.944 133 59 7.944 133 59
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Reduced Wave Function for Gaussian Basis

Figure 3. The normalized position space Gaussian variational wavefunctions are plotted for
Nmax = 1, 3 and 5. The wavefunction converges to the Laguerre basis wavefunction constructed
from 80 basis functions when Nmax is increased from 3 to 5.
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Table 4. Non-relativistic momentum space results; P state (l = 1) energies of the Fourier
transformed (FT) Gaussian, exponential and Laguerre variational wavefunctions for Nmax =
5, Nmax = 10 and Nmax = 15. Note that the results of the Gaussian basis with Nmax = 15 agree
with results of the Laguerre basis with Nmax = 80 up to all decimal places. In this table we keep
the results up to four decimal places (see the text).

Basis function Nmax = 5 Nmax = 10 Nmax = 15 Nmax = 80

FT Gaussian
1P 3.3616 3.3613 3.3613
2P 4.9692 4.8845 4.8845
3P 7.3819 6.2076 6.2076
4P 13.3651 7.4057 7.4057
5P 36.5071 8.5265 8.5152
FT exponential
1P 3.3655 3.3613
2P 5.0092 4.8850
3P 6.4933 6.2111
4P 12.7104 7.4955
5P 51.3041 8.8395
FT Laguerre
1P 3.3647 3.3613 3.3613 3.3613
2P 4.9178 4.8856 4.8845 4.8845
3P 6.5930 6.2160 6.2080 6.2076
4P 9.1130 7.4665 7.4083 7.4057
5P 11.5116 8.9001 8.5332 8.5152
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Reduced Wave Function ( l = 0)
First Excited state

Figure 4. The normalized position space Gaussian variational wavefunctions for the first excited
states are plotted for Nmax = 2, 5 and 10. Note that the wavefunction converges to the Laguerre
basis wavefunction constructed from 80 basis functions when Nmax is increased from 5 to 10.
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Table 5. Relativistic momentum space results; S state (l = 0) energies of the Fourier transformed
(FT) Gaussian, exponential and Laguerre variational wavefunctions for Nmax = 5, Nmax = 10 and
Nmax = 15. Note that the results of the Gaussian basis with Nmax = 15 agree with results of the
Laguerre basis with Nmax = 80 up to all decimal places. In this table, we keep the results up to
four decimal places (see the text).

Basis function Nmax = 5 Nmax = 10 Nmax = 15 Nmax = 80

FT Gaussian
1S 4.1433 4.1433 4.1433
2S 5.5569 5.5553 5.5553
3S 6.6732 6.6436 6.6436
4S 7.9824 7.5645 7.5644
5S 11.4196 8.3783 8.3782
FT exponential
1S 4.1441 4.1433
2S 5.5631 5.5554
3S 6.8866 6.6446
4S 8.3077 7.5737
5S 16.2128 8.5056
FT Laguerre
1S 4.1436 4.1433 4.1433 4.1433
2S 5.5883 5.5556 5.5553 5.5553
3S 7.0207 6.6562 6.6440 6.6436
4S 8.3898 7.6431 7.5689 7.5644
5S 10.4595 8.5748 8.3964 8.3782

It is easier to incorporate relativistic kinematics in momentum space because of the radical√
p2 + m2. One complication in performing calculations in momentum space is that the linear

potential and Coulomb-like potentials become singular in momentum space. This can be
overcome by using suitable subtraction methods. We perform calculations with relativistic
kinematics for the linear potential for l = 0 and l = 1 and the results are presented in
tables 5 and 6. There are no analytical results in the case of relativistic kinematics. Therefore,
we calculated the energies with 80 Jacobi (Fourier transform of Laguerre) basis and used them
as a benchmark. Again the Gaussian basis performs better than the exponential. We have also
done the calculations for l = 2 (not listed here) and again find that the accuracies obtained for
l = 2 are comparable with those for l = 0 and l = 1.

Next we present the results of the pure Coulomb-like potential for l = 0. Table 7 presents
the position space calculations, and table 8 presents the momentum space results. For this
potential, we scale the Schrödinger equation so that the energy is given by En = −1/n2. We
see that the exponential basis performs better than the Gaussian and the Laguerre for the same
number of basis used. This is not surprising because the ground-state Coulomb wavefunction
is proportional to a decaying exponential.

5. Conclusions

In summary, three different basis function sets have been chosen for use in variational
calculations. Two are simple basis functions of Gaussian and exponential forms. Before
using them in the variational calculations, we construct orthonormal sets. The other one is the
Laguerre basis which is orthonormal and complete. For the linear potential, we performed
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Table 6. Relativistic momentum space results; P state (l = 1) energies of the Fourier
transformed (FT) of the Gaussian, exponential and Laguerre variational wavefunctions for
Nmax = 5, Nmax = 10 and Nmax = 15. Note that the results of the Gaussian basis with Nmax = 15
agree with results of the Laguerre basis with Nmax = 80 up to all decimal places. In this table, we
keep the results up to four decimal places (see the text).

Basis function Nmax = 5 Nmax = 10 Nmax = 15 Nmax = 80

FT Gaussian
1P 5.0341 5.0340 5.0340
2P 6.2012 6.1991 6.1991
3P 7.2096 7.1702 7.1702
4P 8.5569 8.0200 8.0200
5P 12.5293 8.7851 8.7851
FT exponential
1P 5.0354 5.0340
2P 6.2136 6.1992
3P 7.5188 7.1708
4P 8.5414 8.0491
5P 14.0721 8.8737
FT Laguerre
1P 5.0375 5.0340 5.0340 5.0340
2P 6.2833 6.2009 6.1991 6.1991
3P 7.4178 7.1853 7.1707 7.1702
4P 8.8923 8.0857 8.0249 8.0200
5P 11.7894 9.2046 8.8465 8.7851

Table 7. Non-relativistic Coulomb position space results. S state (l = 0) energies of the Gaussian,
exponential and Laguerre variational wavefunctions for Nmax = 5, Nmax = 10 and Nmax = 15.
The results of the Laguerre basis with Nmax = 80 are equal to the values of the scaled Coulomb
energy E = −1/n2 and are used as a benchmark.

Basis function Nmax = 5 Nmax = 10 Nmax = 15 Nmax = 80 and exact

Gaussian
1S −0.99254377 −0.99885192 −0.99936690
2S −0.21192874 −0.24693952
3S −0.01173145
4S
5S
Exponential
1S −1.00000000 −1.00000000
2S −0.24975255 −0.25000000
3S −0.11099802 −0.11111111
4S −0.05749284 −0.06249998
5S −0.03962717
Laguerre
1S −1.00000000 −1.00000000 −1.00000000 −1.00000000
2S −0.24433408 −0.24999824 −0.25000000 −0.25000000
3S −0.10564871 −0.11102385 −0.11111111
4S −0.05362321 −0.06250000
5S −0.04000000
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Table 8. Non-relativistic Coulomb momentum space results. S state (l = 0) energies of
the Fourier transform of the Gaussian, exponential and Laguerre variational wavefunctions for
Nmax = 5, Nmax = 10 and Nmax = 15. The results of the Laguerre basis with Nmax = 80 are
equal to the values of the scaled Coulomb energy E = −1/n2 and are used as a benchmark.

Basis function Nmax = 5 Nmax = 10 Nmax = 15 Nmax = 80 and exact

FT Gaussian
1S −0.99254377 −0.99885192 −0.99936521
2S −0.21192874 −0.24693685
3S −0.01172791
4S
5S
FT Exponential
1S −0.99999995 −0.99999974
2S −0.24975237 −0.24999966
3S −0.11099779 −0.11111072
4S −0.05749251 −0.06249952
5S −0.03962332
FT Laguerre
1S −1.00000000 −1.00000000 −1.00000000 −1.00000000
2S −0.24433408 −0.24999824 −0.25000000 −0.25000000
3S −0.10564871 −0.11102385 −0.11111111
4S −0.05362321 −0.06250000
5S −0.04000000

calculations in both position space and momentum space for l = 0, 1 and 2, and for the
momentum space calculations we also included relativistic kinematics. For the Coulomb-like
potential, we performed the calculations for l = 0 in both position space and momentum
space. In the case of the linear potential, the results of the Gaussian basis are better than
the results of exponential and Laguerre basis for the same number of basis used. This is
true for l = 0, 1 and 2 and for both non-relativistic and relativistic cases. In the case of the
Coulomb-like potential, the exponential basis performs better than the Gaussian and Laguerre
basis again for the same number of basis functions used. The disadvantage of using these
simple basis functions is that there is an upper limit to the number of orthogonalized functions
that can be constructed numerically. But as long as we are interested only in the low-lying
states, the use of these simple basis sets is much more efficient.
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